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Abstract. Motivated by open questions in the long-time dynamics of fluid motion and fluid turbu-
lence, we investigate the existence of nonstationary solutions to the Navier-Stokes equations (NSE)
with constant energy profiles, with constant enstrophy profiles, or both. In this paper we make
progress in this area by constructing a nonstationary solution to the incompressible NSE (on the
3D torus) whose energy remains constant. Similarly, we construct a nonstationary solution whose
enstrophy remains constant. These constructions necessarily exist outside of the attractor and are
supported on an infinite number of modes. On the 2D torus we show that when the force is an
eigenvector of the Stokes operator any solution with nontrivial nonlinear term must be supported
on an infinite number of Fourier modes. This result is then used to disprove the existence of the
so-called chained ghost solutions introduced in [24].

1. Introduction

Our interest in the issue of the existence non steady-state solutions possessing time-independent
global quantities is motivated by the need to understand the long-time dynamics of the equations
of fluid dynamics in the context of fluid turbulence. In particular, it becomes important to describe
the dynamics in terms of the key physical quantities involved in the empirical theory of turbulence
dating back to Kolmogorov in 3D [17, 18] and Kraichnan in 2D [19] (see also [15] for a comprehensive
overview and [7, 12] for a mathematical setup in terms of Navier-Stokes equations). Among these
quantities, the key role is played by fluid energy, enstrophy, and in 2D, palinstrophy, which in
the empirical theory determine behavior of such quantities as the Reynolds number, the energy
dissipation rate, and the structure of energy transfer among the scales of the fluid flow. Another
key feature of turbulence theories is the basic finite-dimensionality of fluid turbulence. This finite-
dimensionality can be understood through the notion of Landau-Lifschitz degrees of freedom [20]
and determining modes [2] – the maximal number of parameters needed to completely resolve
dynamics of the fluid flow, which in turbulence is related to dissipation scale. To connect these
empirical theories to the basic equations of motion, it becomes crucial to Investigate the long-time
dynamics of the energy, enstrophy, and palinstrophy of the solutions of Navier-Stokes equations
(NSE).

A natural focus of the mathematical studies of turbulence has been the global attractor of the
2D Navier-Stokes system (or weak attractor in 3D), which captures the long-term dynamics. In
particular, the finite-dimensionality of the global attractor in 2D has been established [3, 21], and
the above-mentioned physical quantities of energy, enstrophy, and palinstrophy of solutions on the
attractor in the 2D periodic case under a stationary body force (and how they relate to turbulence)
have been studied extensively ([1, 4, 5, 6, 8, 10, 11]). It was shown, for example, in [6] that the
global attractor for the 2D NSE with periodic boundary conditions is bounded in the (suitably
normalized) energy and enstrophy plane between a parabola and a line and that these bounds on
the attractor location are sharp. Further refinements on these bounds and results in terms of the
palinstrophy can be found in ([4, 5]).
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A question that arises naturally in this area is how much we can determine regarding the dynamics
of the system by simply considering the energy, enstrophy, and palinstrophy of solutions in the
attractor. If there can exist nonstationary solutions in the attractor where the energy, enstrophy,
and palinstrophy nevertheless remain constant, then it would seem that these quantities somehow
do not capture the dynamics of the solutions as described in empirical theory of turbulence. If
it can be shown, however, that any solution with constant energy, enstrophy, and palinstrophy is
indeed a stationary solution, then these quantities certainly capture at least some relevant features
of the dynamics of the system. While fully resolving the dynamics necessitates a large number of
degrees of freedom and determining modes [2, 9, 11, 14, 16], there is an indication that, consistent
with the empirical theories, the dynamics of energy, enstrophy, and palinstrophy may still tell us
quite a bit.

The question of whether a nonstationary solution in the attractor may have constant energy and
enstrophy for all time was introduced in [10]. In that paper the authors considered the NSE
in 2D with periodic boundary conditions under the assumption that the force is an eigenvector
of the Stokes operator. They referred to nonstationary solutions in the attractor with constant
energy and enstrophy as “ghost solutions”, alluding to the fact that their existence in general
remained unknown. It is known that under certain conditions ghost solutions in the attractor are
not possible. For example, if the Grashof number is small enough then the attractor consists of a
single point ([6]). Similarly, if the force is an eigenvector of the Stokes operator associated with the
smallest eigenvalue, then the attractor consists of a single point and no ghost solutions are possible.
Investigation into the existence of ghost solutions has continued more recently in ([23], [24]), where
a sub-class of ghost solutions with an additional stability property was introduced. Such solutions
were dubbed chained ghost solutions (see Section 3 for the relevant definitions). In general, results
as they pertain to ghost solutions are limited in scope. Indeed, it is not known in general whether
there exist nonstationary solutions to the NSE under the more relaxed condition of simply having
constant energy (or simply having constant enstrophy, or constant palinstrophy).

Curiously, our investigations into the existence of ghost solutions naturally connect to the issues
of finite-dimensionality of the NSE flows. Typically, the finite-dimensionality is described in terms
of fractal dimension, in terms of Landau-Lifschitz degrees of freedom, or in terms of determining
modes. However, in the context of ghost solutions, we consider whether the finite-dimensionality
can be fully manifested in terms of Fourier scales. Namely, one would want to investigate the
possibility that NSE solutions evolve in a finite-dimensional subspace of Fourier space – the so
called finite-mode solutions. So far, the only such solutions are proved to be stationary solutions
arising in special cases, e.g. in the case of single-mode force, which exclude turbulence ([6, 10, 22]).
The question of the existence of non-stationary finite-mode solutions remains largely unresolved,
yet resolving this question would not only improve our understanding of the finite-dimensionality
of fluid flows, but also would show whether some NSE flows are described by an explicit finite-
dimensional ODE in Fourier space.

In this paper we investigate the properties of nonstationary solutions to the Navier-Stokes equations
with constant energy profiles and with constant enstrophy profiles, with a particular focus on a
possibility of finite-mode solutions. Consistent with previous studies in this area ([6, 10, 23, 24])
we focus on the space periodic case with a constant-in-time force. First, we analyze such solutions
under the simpler Stokes system and obtain an explicit description of such solutions. We then export
results from that analysis to the NSE on the 3D torus by exploiting basic cancellations in the non-
linearity, thus establishing the existence of 3D NSE solutions whose energy (respectively, enstrophy)
remains constant. These constructions necessarily exist outside of the 3D (weak) attractor and are
supported on an infinite number of Fourier modes. We then investigate the possibility of finite-
mode solutions to the NSE on the 2D torus. As a result of this investigation we show that any
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solution to the NSE on the 2D torus with nontrivial nonlinear term must, if it exists, be supported
on an infinite number of modes when the force is an eigenvector of the Stokes operator (we note
that in this case, if the nonlinearity is zero, the structure of the finite-mode solutions is trivial).
Together these results rule out the existence of so-called chained ghost solutions (as defined in [23])
since such solutions are necessarily finite-mode and cannot exist if the nonlinear term is zero.

In Section 2 we outline the theoretical framework for our discussion. In Section 3 we provide an
overview of recent results in the literature. In Section 4 we analyze the Stokes system and use these
results to construct a nonstationary constant-energy (as well as constant-enstrophy) solution to
the 3D Navier-Stokes equations with periodic boundary conditions. In Section 5 we prove results
regarding the possible forces that allow for finite-mode solutions to the 2D Navier-Stokes equations
with periodic boundary conditions. We then apply these results to show that if the force is an
eigenvector of the Stokes operator then solutions with nontrivial nonlinear term, if they exist, are
necessarily supported on an infinite number of modes.

2. Preliminaries

In this paper we focus on the incompressible Navier-Stokes equations (NSE) with zero space average

(1)

$
’’’&

’’’%

Bu
Bt ´ ⌫�u ` pu ¨ rqu ` rp “ F

r ¨ u “ 0≥
⌦ udx “ 0,

≥
⌦ Fdx “ 0

upx, 0q “ u0

on a periodic spatial domain ⌦ “ r0, Lsnper, n “ 2, 3. Here u “ upx, tq is the fluid velocity vector
field, ⌫ is the kinematic viscosity, p “ ppx, tq is the pressure (per density), F “ Fpxq is the body
force vector field (per density), and u0 “ u0pxq is the initial condition. The unknowns in these
equations are the vector u and the scalar p. In the space-periodic case the zero space average
assumption is made without loss of generality (see, for example, [12], Chapter 2, Section 2).

Two important physical quantities that we will deal with are the kinetic energy and the enstrophy
(per unit mass) of the fluid:

energy :
1

2

ª

⌦
|upxq|2dx(2)

enstrophy :
nÿ

i“1

1

2

ª

⌦
|ruipxq|2dx.(3)

We associate with this system the natural Hilbert space of divergence-free zero space average
functions with bounded energy, often referred to as H. The inner product on H is the usual
rL2p⌦qsn inner product defined by

(4) pu, vq “
ª

⌦
upxq ¨ vpxqdx.

For the norm on H we use the notation

(5) |u| “ pu, uq1{2 “
ˆª

⌦
|upxq|2dx

˙1{2

where the di↵erence between whether | ¨ | refers to the norm in H or the modulus of a vector is
hopefully clear from context.
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We view the system in (1) as an evolution equation in H. Taking the Helmoltz-Leray projection
onto H of (1) we have the following functional formulation of the Navier-Stokes equations:

(6)

#
du
dt ` ⌫Au ` Bpu, uq “ f

up0q “ u0

where A :“ PLp´�uq is the Stokes operator, Bpu, vq :“ PLppu ¨ rqvq is a bilinear operator, and
f :“ PLpF q (here PL represent the Helmholtz-Leray projection). Note that PLprpq “ 0.

The Stokes operator A : DpAq fiÑ H is well-known to be self-adjoint with compact inverse, and
with eigenvalues of the form

(7) �j “
ˆ
2⇡

L

˙2

j ¨ j; j P Znzt0u,

in the space-periodic case. The smallest eigenvalue of A will play a special role in our estimates,
so we will denote

(8) �0 “
ˆ
2⇡

L

˙2

.

We may write any vector field upxq P H as follows:

(9) upxq “
ÿ

jPZnzt0u
uj!jpxq

with uj P R and where t!ju forms an orthonormal basis for H, with each !j being an eigenvector
of A with explicit eigenvalue �j . Indeed, in the space-periodic case the eigenvectors of A may be
represented by trigonometric polynomials. Thus, any function in H may alternatively be written
as a Fourier series

(10) u “
ÿ

jPZnzt0u
ûje

ip2⇡{Lqj¨x

where ûj P Cn such that
∞

jPZnzt0u |ûj |2 † 8 (to ensure finite energy), ûj “ û´j (to assure u is
real), and ûj ¨ j “ 0 (to assure that u is divergence-free) for all j P Znzt0u. Note that we have

(11) |u|2 “
ÿ

jPZnzt0u
|ûj |2.

Another natural space that we associate with this system is the subspace of H consisting of finite-
enstrophy functions, often referred to as DpA1{2q or V . We write the natural norm on V , which is
equivalent to the rH1p⌦qsn norm, as

(12) }u} “ pA1{2
u,A

1{2
uq1{2 “ ppu, uqq1{2 “

¨

˝
ª

⌦

ˇ̌
ˇ̌
ˇ

nÿ

i“1

B
Bxi

upxq
ˇ̌
ˇ̌
ˇ

2
˛

‚
1{2

.

Note that we have

(13) }u}2 “
ÿ

jPZnzt0u
|j|2|ûj |2.

For strong solutions to the NSE we have the following energy balance equation:

(14)
1

2

d

dt
|u|2 ` ⌫}u}2 “ pf, uq.
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This is obtained by taking the inner product in H of the the Navier-Stokes equations with the
solution u and using the fact that pBpu, uq, uq “ 0. In two dimensions only, we also have the
following enstrophy balance equation

(15)
1

2

d

dt
}u}2 ` ⌫|Au|2 “ pf,Auq,

which is obtained by taking the inner product of the NSE with Au and using the two-dimensional
orthogonality relation pBpu, uq, Auq “ 0.

We may represent the system in (6) as an infinite-dimensional system of coupled ordinary di↵erential
equations by rewriting it in terms of its Fourier series:

(16) û
1
jptq ` ⌫�j ûjptq ` {Bpu, uqjptq “ f̂j ; j P Znzt0u.

Given u, v P DpAq we may explicitly write the Fourier coe�cients of Bpu, vq P H as follows:

(17) {Bpu, vqj “ 2⇡i

L

ÿ

kPZnzt0u

„
pûj´k ¨ kqv̂k ´ pûj´k ¨ kqpv̂k ¨ jq

|j|2 j

⇢
.

In 2D we may alternatively write the Fourier coe�cients of Bpu, vq as follows:

(18) {Bpu, vqj “ 2⇡i

L

ÿ

kPZ2zt0u

pûj´k ¨ kqpv̂k ¨ jKq
|j|2 j

K

where for j “ pj1, j2q we define jK “ p´j2, j1q. See the Appendix (Section 6) for formal calculations
of (17) and (18).

Two dimensionless quantities that are useful for understanding fluid flow are the generalized Grashof
number (introduced in [13]) and the well-known Reynolds number. The definition of the generalized
Grashof number depends on the number of spatial dimensions of the flow. It is defined as

(19) G “ |f |
⌫2�0

in 2D; G “ |f |
⌫2�

3{4
0

in 3D.

In order to define the Reynolds number one must first define some appropriate (time-independent)
“average” of the fluid velocity. Several reasonable choices are possible, so let x|u|y refer to an
appropriate average of the fluid speed. Then we define the Reynolds number as

(20) Re “ x|u|y
⌫�

1{2
0

.

In two-dimensions there exists a well-defined global attractor (a compact subset of H that is
invariant under the flow and that uniformly attracts bounded sets in H). In 2D, we may define
the solution operator Sptq by Sptqu0 “ uptq, where uptq is the unique solution to (6) at time t with
initial data u0. It is well-known that the operator Sptq depends continuously on the initial data.

3. Specific Preliminaries

The term ghost solution was first introduced in [10] to refer to nonstationary solutions to the NSE
whose energy and enstrophy remain constant for all time. In the original context the spatial domain
of the fluid flow is the 2D torus, the force is an eigenvector of the Stokes operator, and the solution
lies in the global attractor. However, the concept of a ghost solution makes sense even outside of
these specifications. Thus, we define ghost solutions as follows:
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Definition 3.1. A ghost solution is a nonstationary solution, upx, tq, to (6) (in 2D or 3D) such

that |uptq| and }uptq} are constant in time for all t • 0 where u is defined.

Note that this definition allows the possibility of ghost solutions that exist outside of the attractor.
The only restriction on the forcing function f is that it is a stationary vector in H. While in this
paper we work on a periodic domain, that is not an essential feature of the definition.

The advantage of working on a 2D periodic domain with an eigenvector force is that in this case
ghost solutions have the following important property:

Theorem 3.2 (See equation (6.3) of [10]). Let ⌦ “ r0, Ls2per and let Af “ �ff . Let u be a ghost

solution. Then the following relationship holds:

(21) ⌫}u}2 “ pf, uq “ ⌫

�f
|Au|2.

This relationship is an immediate consequence of the energy and enstrophy balance equations in
2D. It also directly shows that, under these conditions, constant energy and constant enstrophy
together imply constant palinstrophy (|Au|2). As a result, the authors of [24] investigate the
following (dynamic in time) subspace of H

(22) H̃ptq :“ spantf, uptq, Auptq, A2
uptqu

since for any vector v P H̃ the product pv, uq is constant. The authors of [24] show that for any ghost
solution u it must be the case that spantfu à spantf, uu à spantf, u,Auu, but their work allows
for the possibility that A2

u P spantf, u,Auu. Considering this potential degeneracy motivates the
following definition.

Definition 3.3 (See [24] Definition 6.1). Consider the system (6) with ⌦ “ r0, Ls2per and suppose

that f is an eigenvector of the Stokes operator. A chained ghost solution is a ghost solution in

the global attractor satisfying the following relation:

A
2
uptq “ �f ` �uptq ` ↵Auptq, @t P R,

for real scalars ↵,�, and �.

Unlike the general notion of ghost solutions, the motivation for considering chained ghost solutions
necessarily relies on the domain being the 2D torus and the force being an eigenvector of the Stokes
operator.

The authors of [24] prove several results concerning chained ghost solutions. The most relevant
result for this paper is the fact that chained ghost solutions may be decomposed as a sum of three
eigenvectors of the Stokes operator. This theorem was restated nicely in [23]. We state a simplified
version of the result here:

Theorem 3.4 (See Theorem 6.3 in [24] or Theorem 2.1 in [23]). A chained ghost solution uptq may

be written in the following form:

uptq “ u`ptq ` u´ptq ` }u}2
|f |2 f,

where u` and u´ are eigenvectors of the Stokes operator A.

Since }u}2
|f |2 is a scalar and f is assumed to be an eigenvector of the Stokes operator, this theorem

implies that any chained ghost solution may be written as a sum of three eigenvectors of A.
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4. Nonstationary Constant-Energy Solution Construction on the 3D Torus

In this section we construct a nonstationary solution to (6) in 3D that has constant energy ev-
erywhere it is defined. We begin by constructing a nonstationary solution to the Stokes system
(i.e., the Navier-Stokes equations but without the nonlinear term) that is defined and has constant
energy for all t • 0. We then show that this construction can be modified to create a nonstationary
constant-energy solution the full Navier-Stokes equations in 3D.

4.1. Stokes System. By the Stokes system we refer to the following set of partial di↵erential
equations:

(23)

$
’’’&

’’’%

Bu
Bt ´ ⌫�u ` rp “ F

r ¨ u “ 0≥
⌦ udx “ 0,

≥
⌦ Fdx “ 0

upx, 0q “ u0

on a periodic spatial domain ⌦ “ r0, Lsnper, n “ 2, 3. This system is simply the NSE without the
non-linear term. The functional formulation of the Stokes system in H is as follows:

(24)

#
du
dt ` ⌫Au “ f

up0q “ u0.

Recall that we may write any function in H as follows:

(25) upxq “
ÿ

jPZnzt0u
uj!jpxq

where t!jujPZ2zt0u is a set of orthonormal eigenvectors of A spanning H with explicit eigenvalues

�j “
`
2⇡
L

˘2 |j|2. Considering this eigenvector expansion, we see that (24) is equivalent to the
following (possibly infinite) system of linear ordinary di↵erential equations:

(26)
d

dt
ujptq ` ⌫�jujptq “ fj , j P Znzt0u.

Each of these equations can be solved explicitly for all t • 0:

(27) ujptq “
ˆ
ujp0q ´ fj

⌫�j

˙
e

´⌫�jt ` fj

⌫�j
.

From here it can be seen that the global attractor for this system consists of the steady-state
solution: u

˚ “ 1
⌫A

´1
f (i.e. u˚

j “ fj
⌫�j

for each j P Z2zt0u) since solutions in the attractor must

be bounded for all time. Note that the fact that the attractor is a single point clearly implies
non-existence of ghost located solutions on the attractor. However, we will consider the question
in a more general setting of Definition 3.1.

In what follows we will construct a nonstationary constant-energy solution to the Stokes system.
For specificity, we work on the 2D torus with ⌦ “ r0, Ls2per, but this construction can be trivially
adapted to Rn, n • 2. We begin with a lemma regarding a necessary and su�cient condition for
the existence of nonstationary constant-energy solutions to the Stokes system.

Lemma 4.1. Any nonstationary constant-energy solution to the Stokes system (24) requires that

the force and initial condition satisfy the following condition:

(28)
ÿ

jPZ2zt0u

ˆ
ujp0q ´ fj

⌫�j

˙2

e
´2⌫�jt ` 2fj

⌫�j

ˆ
ujp0q ´ fj

⌫�j

˙
e

´⌫�jt “ 0 for all t • 0,

where at least one uj is such that ujptq ‰ fj
⌫�j

. The converse also holds.
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Proof. The energy of the solution to (24) is given by

1

2
|uptq|2 “ 1

2

ÿ

jPZ2zt0u
ujptq2

“ 1

2

ÿ

jPZ2zt0u

„ˆ
ujp0q ´ fj

⌫�j

˙
e

´⌫�jt ` fj

⌫�j

⇢2

“ 1

2

ÿ

jPZ2zt0u

ˆ
ujp0q ´ fj

⌫�j

˙2

e
´2⌫�jt ` 2fj

⌫�j

ˆ
ujp0q ´ fj

⌫�j

˙
e

´⌫�jt `
ˆ

fj

⌫�j

˙2

.

If the energy of a solution is to remain constant then this solution must have the same energy as
the solution in the global attractor. That is, a constant-energy solution must have energy equal to
1
2

∞
jPZ2

´
fj
⌫�j

¯2
. Such a solution would then require that

(29)
ÿ

jPZ2zt0u

ˆ
ujp0q ´ fj

⌫�j

˙2

e
´2⌫�jt ` 2fj

⌫�j

ˆ
ujp0q ´ fj

⌫�j

˙
e

´⌫�jt “ 0.

Note that if we try to make the sum zero by making all the terms zero, this requires that we set
ujp0q “ fj

⌫�j
for each j. However, if this is the case then we have that each ujptq is constant in time,

and in fact that uptq is the steady-state solution. Thus, in order for uptq to be nonstationary, we

need for ujptq ‰ fj
⌫�j

for at least one j.

For the reverse implication note that if
∞

jPZ2zt0u
´
ujp0q ´ fj

⌫�j

¯2
e

´2⌫�jt` 2fj
⌫�j

´
ujp0q ´ fj

⌫�j

¯
e

´⌫�jt “

0 then 1
2 |uptq|2 “ 1

2

∞
jPZ2

´
fj
⌫�j

¯2
and the energy of u is constant. Again, the condition that some

uj is such that ujptq ‰ fj
⌫�j

guarantees that u is nonstationary. ⇤

Suppose u is a nonstationary constant-energy solution to (24). Let j0 be such that uj0p0q ‰ fj0
⌫�j0

.

Then we at least have two terms in equation (28) that need to be cancelled:

(30)

ˆ
uj0p0q ´ fj0

⌫�j0

˙2

e
´2⌫�j0 t; &

2fj0
⌫�j0

ˆ
uj0p0q ´ fj0

⌫�j0

˙
e

´⌫�j0 t.

Since the functions e´2⌫�j0 t and e
´⌫�j0 t are linearly independent, we know that

(31)

ˆ
uj0p0q ´ fj0

⌫�j0

˙2

e
´2⌫�j0 t ` fj0

⌫�j0

ˆ
uj0p0q ´ 2fj0

⌫�j0

˙
e

´⌫�j0 t ı 0.

Thus, we conclude that the term
´
uj0p0q ´ fj0

⌫�j0

¯2
e

´2⌫�j0 t must be cancelled by terms of the form

2fk
⌫�k

´
ukp0q ´ fk

⌫�k

¯
e

´⌫�kt where �k “ 2�j0 . However, this creates new terms
´
ukp0q ´ fk

⌫�k

¯2
e

´2⌫�kt,

which themselves must be cancelled by terms associated with an eigenvalue equal to 2�k “ 4�j0 .
These considerations motivate the following lemma.

Lemma 4.2. For any j P Z2zt0u and n P N we have that 2n�j is an eigenvalue of the Stokes

operator.
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Proof. This follows almost directly from the Sum of Two Squares Theorem, which states that an
integer m is the sum of two squares if and only if, in the prime factorization of m, all primes

congruent to 3 modulo 4 are to an even power. Consider an arbitrary eigenvalue �j “
`
2⇡
L

˘2
j ¨ j.

Since j ¨ j “ j
2
1 ` j

2
2 is the sum of two squares, the prime factorization of j ¨ j contains only even

powers of primes congruent to 3 modulo 4. Note also that the prime factorization of 2nj ¨ j then
also has only even powers of primes congruent to 3 modulo 4 for any n. Thus 2nj ¨ j “ k

2
1 ` k

2
2 for

some integers k1, k2. Thus, for k “ pk1, k2q we have 2n�j “ �k. ⇤

Remark 4.3. In the 3D case, by Legendre’s Theorem, m “ j ¨ j is a sum of three squares if and

only if m is not of the form 4kp8i ` 7q, and therefore the 3D version of Lemma 4.2 holds for any

j P Z2zt0u such that j ¨ j ı 7pmod 8q (e.g. j “ p1, 0, 0q). In the case n • 4, by Lagrange’s theorem,

any m P N can be represented as a sum of four, and consequently of any number of squares, and

therefore Lemma 4.2 holds with no restrictions on j P Znzt0u.

Remark 4.4. For an explicit construction of a sequence of eigenvalues t2n�junPN, consider the

following:

For j “ pj1, 0q with j1 ‰ 0 let

2n�j “
#
�pj12pn´1q{2, j12pn´1q{2q if n is odd

�pj12n{2, 0q if n is even

Before we move on to the next lemma, let us consider the following motivating calculations. Let j0
be such that fj0 “ 0 and uj0p0q ‰ 0. Then the j

th
0 term in the sum (28) would simply be

uj0p0q2e´2⌫�j0 t.

Let �j1 be such that �j1 “ 2�j0 . Then we have that the j
st
1 term in sum (28) is

ˆ
uj1p0q ´ fj1

⌫�j1

˙2

e
´2⌫�j1 t ` 2fj1

⌫�j1

ˆ
uj1p0q ´ fj1

⌫�j1

˙
e

´⌫�j1 t.

Since �j1 “ 2�j0 we have that
2fj1
⌫�j1

´
uj1p0q ´ fj1

⌫�j1

¯
e

´⌫�j1 t from the j
st
1 term cancels the j

th
0 term

uj0p0q2e´2⌫�j0 t exactly when

2fj1
⌫�j1

ˆ
uj1p0q ´ fj1

⌫�j1

˙
“ ´uj0p0q2,

or rather

uj1p0q “ fj1

2⌫�j0
´ ⌫�j0uj0p0q2

fj1
.

Of course this leaves us with the first part of the j
st
1 term leftover:

´
uj1p0q ´ fj1

⌫�j1

¯2
e

´2⌫�j1 t. If we

let �j2 be such that �j2 “ 2�j1 “ 4�j0 then the j
nd
2 term of sum (28) is

ˆ
uj2p0q ´ fj2

⌫�j2

˙2

e
´2⌫�j2 t ` 2fj2

⌫�j2

ˆ
uj2p0q ´ fj2

⌫�j2

˙
e

´⌫�j2 t.
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This time we get that the second part of the j
nd
2 term,

2fj2
⌫�j2

´
uj2p0q ´ fj2

⌫�j2

¯
e

´⌫�j2 t, cancels the

remainder from the j
st
1 term,

´
uj1p0q ´ fj1

⌫�j1

¯2
e

´2⌫�j1 t, exactly when

2fj2
⌫�j2

ˆ
uj2p0q ´ fj2

⌫�j2

˙
“ ´

ˆ
uj1p0q ´ fj1

⌫�j1

˙2

“ ´
⌫
2
�
2
j0uj0p0q4
f
2
j1

,

or rather

uj2p0q “ fj2

4⌫�j0
´

2⌫3�3
j0uj0p0q4
f
2
j1
fj2

.

Continuing in this pattern, we get successive cancellation of terms in the jn modes exactly when
we define

ujnp0q “ fjn

⌫2n�j0
´ p2⌫�j0uj0p0qq2n

2n`1⌫�j0

±n
k“1pfjkq2n´k .

We now establish the following partial sum lemma:

Lemma 4.5. Fix j0 P Z2zt0u. Choose a sequence jn P Z2
, n “ 1, 2, 3 . . ., such that �jn “ 2n�j0.

Let fj0 “ 0 and let fjn ‰ 0 for n ° 0. Let uj0p0q ‰ 0. If we define ujnp0q for n • 1 recursively as

(32) ujnp0q “ fjn

⌫2n�j0
´ p2⌫�j0uj0p0qq2n

2n`1⌫�j0

±n
k“1pfjkq2n´k ,

then the formal sum

(33)
8ÿ

n“0

ˆ
ujnp0q ´ fjn

⌫�jn

˙2

e
´2⌫�jn t ` 2fjn

⌫�jn

ˆ
ujnp0q ´ fjn

⌫�jn

˙
e

´⌫�jn t

has as its N
th

partial sum

(34) SN “
«

p2⌫�j0uj0p0qq2N

2N`1⌫�j0

±N
k“1pfjkq2N´k

�2

e
´2N`1⌫�j0 t.

Proof. We prove this by induction. As our base case we have

S0 “
ˆ
uj0p0q ´ fj0

⌫�j0

˙2

e
´2⌫�j0 t ` 2fj0

⌫�j0

ˆ
uj0p0q ´ fj0

⌫�j0

˙
e

´⌫�j0 t “ uj0p0q2e´2⌫�j0 t,

which is of the correct form. Now suppose we have that

SN “
«

p2⌫�j0uj0p0qq2N

2N`1⌫�j0

±N
k“1pfjkq2N´k

�2

e
´2N`1⌫�j0 t

for N • 0. Distributing the square allows us to write this in a more convenient form for later:

(35) SN “ p2⌫�j0uj0p0qq2N`1

22pN`1qp⌫�j0q2 ±N
k“1pfjkq2N`1´k

e
´2N`1⌫�j0 t
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Consider the following calculations:

SN`1 “ SN `
ˆ
ujN`1p0q ´ fjN`1

⌫�jN`1

˙2

e
´2⌫�jN`1

t ` 2fjN`1

⌫�jN`1

ˆ
ujN`1p0q ´ fjN`1

⌫�jN`1

˙
e

´⌫�jN`1
t

“ SN `
ˆ
ujN`1p0q ´ fjN`1

⌫�jN`1

˙2

e
´2⌫�jN`1

t ´ 2fjN`1

⌫2N`1�j0

˜
p2⌫�j0uj0p0qq2N`1

2N`2⌫�j0

±N`1
k“1 pfjkq2N`1´k

¸
e

´⌫�jN`1
t

“ SN `
ˆ
ujN`1p0q ´ fjN`1

⌫�jN`1

˙2

e
´2⌫�jN`1

t ´
˜

p2⌫�j0uj0p0qq2N`1

22N`2p⌫�j0q2 ±N
k“1pfjkq2N`1´k

¸
e

´⌫�jN`1
t

“
ˆ
ujN`1p0q ´ fjN`1

⌫�jN`1

˙2

e
´2⌫�jN`1

t

“
«

p2⌫�j0uj0p0qq2N`1

2pN`1q`1⌫�j0

±N`1
k“1 pfjkq2N`1´k

�2

e
´2pN`1q`1⌫�j0 t.

In the move to the second line we use the definition of ujN`1 as given in equation (32). The move
to the third line is the result of simplification after using the fact that �jN`1 “ 2N`1

�j0 . The move
to the fourth line uses the formulation of SN given in equation (35). The final line again uses the
definition of ujN`1 as given in equation (32). Thus we have that SN`1 is of the correct form and
the lemma is established. ⇤

Remark 4.6. Choose pjnq, fjn, and ujnp0q as in Lemma 4.5. If we additionally choose fj “ 0 and

ujp0q “ 0 for all j not in the sequence tjnu, then we have the sum from (28) reduces to (33). For

such choices of our parameters, we have that the identity (28) is satisfied exactly when

(36) lim
NÑ8

«
p2⌫�j0uj0p0qq2N

2N`1⌫�j0

±N
k“1pfjkq2N´k

�2

e
´2N`1⌫�j0 t “ 0.

In one sense, it is easy to find appropriate values of �j0 , ⌫, ujp0q and tfjnu such that the limit in (36)
is satisfied for all t • 0 (for example, set all parameters equal to 1). However, we should minimally
require that our choices guarantee that the force and initial condition are at least in H and ideally,
due our interest in the constant enstrophy which we address later, in V . Our task now is to find
values of �j0 , ⌫, uj0 and tfjnu such that the following criteria hold:

(1) up0q P V

(2) f P V

(3) lim
NÑ8

«
p2⌫�j0uj0p0qq2N

2N`1⌫�j0

±N
k“1pfjkq2N´k

�2

e
´2N`1⌫�j0 t “ 0.

As a final preliminary result, we require the closed form of an important sum that arises in our
calculations:

Lemma 4.7. For any N P N

(37)
Nÿ

k“1

k2N´k “ 2N`1 ´ N ´ 2.

Proof. This can be shown by a straighforward proof by induction. ⇤
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We now prove the following theorem which establishes the construction of a constant-energy solution
to the Stokes system.

Theorem 4.8. Fix j0 P Z2zt0u. Choose a sequence jn P Z2
, n “ 1, 2, 3 . . ., such that �jn “ 2n�j0.

Let fjn “ 1
bn for n ° 0 with b °

?
2, and let fj “ 0 for all other j P Z2zt0u. Let uj0p0q ‰ 0 be such

that 2⌫�j0 |uj0p0q| b2 § 1, and define ujnp0q recursively as

(38) ujnp0q “ fjn

⌫2n�j0
´ p2⌫�j0uj0p0qq2n

2n`1⌫�j0

±n
k“1pfjkq2n´k .

Let ujp0q “ 0 for all other j P Z2zt0u. Then f and up0q are in V and define a force and initial

condition such that the solution to the Stokes system (24) is nonstationary with constant energy for

all t • 0.

Proof. Let f, u be defined as in the hypothesis of the theorem. First we show that f P V . We
calculate the norm of f in V as follows:

}f}2 “
ÿ

jPZ2zt0u
�jf

2
j

“
8ÿ

n“1

�jnf
2
jn

“
8ÿ

n“1

2n�j0

ˆ
1

bn

˙2

“ �j0

8ÿ

n“1

ˆ
2

b2

˙n

.

Thus, we have f P V for b °
?
2.

Next we calculate a closed form for the term 1±n
k“1pfjk q2n´k . We have

1
±n

k“1pfjkq2n´k “
nπ

k“1

pbkq2n´k

“
nπ

k“1

b
k2n´k

“ b

∞n
k“1 k2

n´k

“ b
2n`1´n´2

where the last identity uses Lemma 4.7.
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Now we calculate the norm of up0q in V :

}up0q}2 “
ÿ

jPZ2zt0u
�jujp0q2

“
8ÿ

n“1

�jnujnp0q2

“
8ÿ

n“1

2n�j0

˜
fjn

⌫2n�j0
´ p2⌫�j0uj0p0qq2n

2n`1⌫�j0

±n
k“1pfjkq2n´k

¸2

“
8ÿ

n“1

2n�j0

˜
1

⌫2n�j0b
n

´ p2⌫�j0uj0p0qq2n b2n`1´n´2

2n`1⌫�j0

¸2

“
8ÿ

n“1

2n�j0

˜
1

⌫2n�j0b
n

´
`
2⌫�j0uj0p0qb2

˘2n

2n`1⌫�j0b
2bn

¸2

“
8ÿ

n“1

2n�j0

¨

˝
ˆ

1

⌫2n�j0b
n

˙2

´ 2

ˆ
1

⌫2n�j0b
n

˙ ˜`
2⌫�j0uj0p0qb2

˘2n

2n`1⌫�j0b
2bn

¸
`

˜`
2⌫�j0uj0p0qb2

˘2n

2n`1⌫�j0b
2bn

¸2
˛

‚.

In order for }up0q}2 to be finite we need this final sum to converge. Given the dominance of the
terms with exponent 2n, we have convergence exactly when 2⌫�j0 |uj0p0q| b2 § 1. Thus, u P V

provided 2⌫�j0 |uj0p0q| b2 § 1.

As mentioned in Remark 4.6, the necessary and su�cient condition for having a nonstationary
constant-energy solution to the Stokes system is guaranteed in this case when the limit of the
partial sums given by equation (34) in Lemma 4.5 is equal to 0.

Let us rewrite the N
th partial sum given by equation (34) given our specific choice of f .

(39) SN “
«

p2⌫�j0uj0p0qq2N

2N`1⌫�j0

±N
k“1pfjkq2N´k

�2

e
´2N`1⌫�j0 t “

»

–
`
2⌫�j0uj0p0qb2

˘2N

2N`1⌫�j0b
2bN

fi

fl
2

e
´2N`1⌫�j0 t.

Notice that the requirement for u P V , namely, 2⌫�j0 |uj0p0q| b2 § 1, is also su�cient to guarantee
that limNÑ8 SN “ 0 as desired.

⇤

Remark 4.9. We may similarly construct a nonstationary solution to the Stokes system that has

constant enstrophy. Define f as in Theorem 4.8. Let uj0p0q ‰ 0, and define ujnp0q recursively as

(40) ujnp0q “ fjn

⌫2n�j0
´ p⌫�j0uj0p0qq2n

2n⌫�j0

±n
k“1pfjkq2n´k .

Let ujp0q “ 0 for all other j P Z2zt0u. Then f and up0q are in V and define a force and initial

condition such that the solution to the Stokes system (24) is nonstationary with constant enstrophy

for all t • 0 provided ⌫�j0 |uj0p0q| b2 § 1. The proof mirrors the proof of Theorem 4.8.

Indeed, for any s P R we may construct a solution to the Stokes system such that |As{2
u| is constant.

For a given s we define ujnp0q recursively as follows:

(41) ujnp0q “ fjn

⌫2n�j0
´

`
21´s

⌫�j0uj0p0q
˘2n

2n`1´s⌫�j0

±n
k“1pfjkq2n´k .
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For b
2 ° 2ps{2q´1

we have f P DpAps{2q´1q and up0q P DpAs{2q. These data define a force and initial

condition such that the solution to the Stokes system (24) is nonstationary with constant enstrophy

for all t • 0 provided that 21´s
⌫�j0 |uj0p0q|b2 § 1.

Remark 4.10. In our construction of a nonstationary constant-energy solution to the Stokes sys-

tem there exists a time t † 0 such that the energy is no longer well-defined. Note that the energy

of our solution is finite so long as the limit of the partial sums given by equation (34) converges.

The limit diverges for values of t such that

(42) 2�j0⌫|uj0p0q| b2e´⌫�j0 t ° 1.

Remark 4.11. In our definition of up0q, the decay rate of the fjn coe�cients competes against

the convergence of the sum defining up0q. Choosing fjn to be a geometric series caused the term

1±n
k“1pfjk q2n´k to grow essentially at the rate of pb2q2n. By chance, this matched the growth rate of

the term p�j0⌫uj0p0qq2n and allowed us to choose values of �j0 , ⌫, uj0p0q, and b such that convergence

of the sum defining up0q is guaranteed. However, if the fjn terms decay appreciably faster, then the

sum defining up0q necessarily diverges. Thus, there is a limit to how smooth our choice of f can

be. For example, we may have f P DpAsq for any s P R. However, f cannot be in an “analytic”

class such as DpeAsq for any s P R.

We end this subsection with a pair of theorems regarding nonstationary constant-energy and non-
stationary constant-enstrophy solutions to the Stokes system. Note that the following theorems are
independent of the nonstationary-constant energy and nonstationary constant-enstrophy construc-
tions provided above.

Theorem 4.12. There does not exist a nonstationary solution to the Stokes system (24) with both

constant energy and constant enstrophy, no matter what initial condition and time-independent

force is chosen.

Proof. Suppose uj0p0q ´ fj0
⌫�j0

‰ 0 for some j0 P Z2zt0u (this is the condition for u to be nonstation-

ary). Then in order to for u to have constant energy we require that the sum in (28) be 0. Thus,
we must have (at least) the following cancellation:

(43)
ÿ

|�n|“�j0

ˆ
unp0q ´ fn

⌫�n

˙2

“ ´
ÿ

|�n|“2�j0

2fn
⌫�nfn

ˆ
unp0q ´ fn

⌫�n

˙
.

In order to have constant enstrophy we have the following requirement (analogous to Equation 28):

(44)
ÿ

jPZ2zt0u
�j

ˆ
ujp0q ´ fj

⌫�j

˙2

e
´2⌫�jt ` 2fj

⌫

ˆ
ujp0q ´ fj

⌫�j

˙
e

´⌫�jt “ 0.

Thus, if uj0p0q ´ fj0
⌫�j0

‰ 0, then in order to have constant enstrophy we must have the following

cancellation:
ÿ

|�n|“�j0

�j0

ˆ
unp0q ´ fn

⌫�n

˙2

“ ´
ÿ

|�n|“2�j0

2�j0
2fn

⌫�nfn

ˆ
unp0q ´ fn

⌫�n

˙
,

or rather

(45)
ÿ

|�n|“�j0

ˆ
unp0q ´ fn

⌫�n

˙2

“ 2

¨

˝´
ÿ

|�n|“2�j0

2fn
⌫�nfn

ˆ
unp0q ´ fn

⌫�n

˙˛

‚.
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Equations (43) and (45) can only be simultaneously satisfied if both sides of the equations are
0. ⇤

Theorem 4.13. If the Stokes system (24) admits a nonstationary constant-energy solution then

that solution must be supported on an infinite number of eigenvectors of the Stokes operator. In

addition, the force must also be supported on an infinite number of eigenvectors of the Stokes

operator.

Proof. Suppose for contradiction that u is a nonstationary constant-energy solution to the Stokes
system (24) that is supported on only a finite number of eigenvectors of the Stokes operator. As in

Theorem 4.12, in order for u to be nonstationary we require ujp0q ´ fj
⌫�j

‰ 0 for some j P Z2zt0u.
Let j0 be such that uj0p0q ´ fj0

⌫�j0
‰ 0 and for any other j P Z2zt0u such that ujp0q ´ fj

⌫�j
‰ 0 we

have |j| § |j0|. In order to for u to have constant energy we require that the sum in (28) be 0, and
so we must have (at least) the following cancellation:

(46)
ÿ

|�n|“�j0

ˆ
unp0q ´ fn

⌫�n

˙2

“ ´
ÿ

|�n|“2�j0

2fn
⌫�nfn

ˆ
unp0q ´ fn

⌫�n

˙
.

Since the left-hand side is not zero, the right-hand side must also be non-zero. However, this
means that there must exist a j1 P Z2zt0u such that |j1| ° |j0|, fj1 ‰ 0, and uj1p0q ‰ fj

⌫�j1
. This

contradicts our assumption on j0. Thus u must be supported on an infinite number of eigenvectors
of the Stokes operator. Not only that, we must have that ujp0q ´ fj

⌫�j
‰ 0 for an infinite number of

j. As we just saw, for each j such that ujp0q ´ fj
⌫�j

‰ 0, there must exist a j1 such that |j1| ° |j|,
fj1 ‰ 0, and uj1p0q ‰ fj

⌫�j1
. Thus f must also be supported on an infinite number of eigenvectors

of the Stokes operator. ⇤

Remark 4.14. The analogous result holds for constant-enstrophy solutions. That is, if the Stokes

system (24) admits a nonstationary constant-enstrophy solution then the solution and the force

must be supported on an infinite number of eigenvectors of the Stokes operator. Indeed, this holds

for any nonstationary solution u with |As{2
u| constant for some s P R.

4.2. Extension to 3D Navier-Stokes. Recall that when working on the 3D torus, i.e. ⌦ “
r0, Ls3per, we may write an element of H in terms of its Fourier expansion as follows:

upxq “
ÿ

jPZ3zt0u
ûje

ip2⇡{Lqj¨x

ûj P C3 such that ûj “ û´j and j ¨ ûj “ 0. As shown in Appendix 6, we may write the nonlinear
term in (6) as

(47) Bpu, uq “ PLrpu ¨ rqus “ PL

»

– i2⇡

L

ÿ

j,kPZ3zt0u
pûj ¨ kq ûkeip2⇡{Lqpk`jq¨x

fi

fl .

We now construct our nonstationary constant-energy (for time t • 0) solution to the 3D Navier
Stokes system on the torus using the results developed for the Stokes system. Recall that for any
j0 P Z2zt0u there exists a sequence of indices jn “ pjnp1q, jnp2qq such that �jn “ 2n�j0 for all n • 0.
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Now consider the sequence Jn P Z3zt0u defined such that Jn “ pjnp1q, jnp2q, 0q. Notice that we
have

�˘Jn “
ˆ
2⇡

L

˙2

Jn ¨ Jn “
ˆ
2⇡

L

˙2 `
pjnp1qq2 ` pjnp2qq2 ` 02

˘
“ �jn .

Thus, we have that Jn so defined is such that �˘Jn “ 2n�J0 for n • 0.

First we define our forcing function fpxq “ ∞
jPZ3zt0u f̂je

ip2⇡{Lqj¨x as follows. Let f̂Jn “ f̂´Jn “
p0, 0, fjnq “ p0, 0, 1{bnq for b °

?
2, and f̂j “ 0 for all other j P Z3zt0u. By definition of the f̂Jn

terms we have that f satisfies the reality condition. Note also that f satisfies the divergence-free
condition as well since f̂Jn ¨Jn “ p0, 0, fjnq¨pjnp1q, jnp2q, 0q “ 0, and since f̂j “ 0 (and thus f̂j ¨j “ 0)
for all other j.

Let upx, tq be defined such that ûJnptq “ û´Jnptq “ p0, 0, ujnptqq, where ujnptq is from the nonsta-
tionary constant-energy solution of the Stokes system (for t • 0). Suppose further that ûj “ 0 for
all other j P Z3zt0u. Then, as with f , u satisfies the reality and divergence-free conditions.

We also have that Bpu, uq “ 0 for this choice of u. To see why, consider the sum
ÿ

j,kPZ3zt0u
pûj ¨ kq ûkeip2⇡{Lqpk`jq¨x

from equation (47). Notice that for j R t˘Jnu8
n“0 we have that ûj “ 0 and thus pûj ¨ kq ûkeip2⇡{Lqpk`jq¨x “

0 for all k. Similarly, if k R t˘Jnu8
n“0 we have that ûk “ 0 and thus pûj ¨ kq ûkeip2⇡{Lqpk`jq¨x “ 0 for

all j. Thus equation (47) reduces to

(48) Bpu, uq “ PL

»

– i2⇡

L

ÿ

j,kPt˘Jnu
pûj ¨ kq ûkeip2⇡{Lqpk`jq¨x

fi

fl .

However, if j, k P t˘Jnu8
n“1, then ûj ¨ k “ 0 since ûj “ p0, 0, ujq and k “ pkp1q, kp2q, 0q. Thus, we

have that, for this definition of u, Bpu, uq “ 0.

Thus, this choice of u puts us back in the Stokes system. We now need to confirm that this choice
of u satisfies du

dt ` ⌫Au “ f and that u has constant energy for t • 0. Consider the following
calculations:

du

dt
` ⌫Au “

ÿ

jPZ3zt0u

ˆ
d

dt
` ⌫A

˙
ûje

ip2⇡{Lqj¨x

“
8ÿ

n“1

ˆ
d

dt
` ⌫A

˙
ûJne

ip2⇡{LqJn¨x `
8ÿ

n“1

ˆ
d

dt
` ⌫A

˙
û´Jne

ip2⇡{Lqp´Jnq¨x

“
8ÿ

n“1

`
0, 0, u1

jnptq ` ⌫�jnuptq
˘
e
ip2⇡{LqJn¨x `

8ÿ

n“1

`
0, 0, u1

jnptq ` ⌫�jnuptq
˘
e
ip2⇡{Lqp´Jnq¨x

“
8ÿ

n“1

p0, 0, fjnqeip2⇡{LqJn¨x `
8ÿ

n“1

p0, 0, fjnqeip2⇡{Lqp´Jnq¨x

“
8ÿ

n“1

f̂Jne
ip2⇡{LqJn¨x `

8ÿ

n“1

f̂Jne
ip2⇡{Lqp´Jnq¨x

“ f
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where the move to the fourth line is due to the fact that the ujn terms solve the Stokes system for
those specific fjn terms. Thus we have that the u satisfies the 3D Navier-Stokes system. Now we
confirm that the energy of u is constant.

1

2
|uptq| “ L

3

2

ÿ

jPZ3zt0u
|ûjptq|2

“ L
3

2

˜ 8ÿ

n“1

�Jn |ûJnptq|2 `
8ÿ

n“1

|û´Jnptq|2
¸

“ L
3

2

˜ 8ÿ

n“1

pujnptqq2 `
8ÿ

n“1

pujnptqq2
¸

“ L
3

8ÿ

n“1

ˆ
fjn

⌫�jn

˙2

,

which is constant. The move to the last line is again justified by how the ujn and fjn terms were
defined for the Stokes system. Straightforward calculations show that u, f P V . Thus we have the
following theorem:

Theorem 4.15. Let tjnu8
n“0 and fj , ujp0q, ujptq for j P Z2zt0u be defined as in Theorem 4.8. Let

⌦ “ r0, Ls3per and define Jn “ pjnp1q, jnp2q, 0q. Define f̂j such that f̂Jn “ f̂´Jn “ p0, 0, fjnq and f̂j “
0 for all other j P Z3zt0u. Define ûjptq be such that ûJnptq “ û´Jnptq “ p0, 0, ujnptqq and ûjptq “ 0
for all other j P Z3zt0u. Then the function upx, tq “ ∞

jPZ3zt0u ûjptqeip2⇡{Lqj¨x
is a nonstationary

constant-energy solution to the Navier-Stokes system with force fpxq “ ∞
jPZ3zt0u f̂je

ip2⇡{Lqj¨x
for

t • 0.

Remark 4.16. The above construction lends itself just as easily to creating nonstationary solutions

with constant norm |As{2
u|, for any s P R, on the 3D periodic domain. Simply define the parameters

as in Remark 4.9.

Remark 4.17. The above construction may be modified to create nonstationary constant-energy

(or constant higher norm) solutions in dimension d ° 3. Simply define the indices by Jn “
pjp1q

n , j
p2q
n , 0, ¨ ¨ ¨ , 0q and the non-zero Fourier coe�cients of f and u by f̂Jn “ f̂´Jn “ p0, ¨ ¨ ¨ , 0, fjnq

and ûJnptq “ û´Jnptq “ p0, ¨ ¨ ¨ , 0, ujnptqq.

Remark 4.18. This construction cannot be directly applied to the 2D Navier-Stokes system. In

the 3D case we were able to construct the non-zero Fourier coe�cients ûJnptq and the indices Jn

such that they have disjoint support. This is what caused the nonlinear term to vanish and reduce

the system to the Stokes system. This cannot be done in 2 dimensions since one cannot define

the indices Jn such that they are 0 in the second component and maintain the requirement that

Jn “ 2n�J0. This is because if Jn “ pJnp1q, 0q, then �Jn “
`
2⇡
L

˘2 pJnp1qq2 is always a perfect

square. However, 2n�J0 would only be a perfect square when n is even.

Remark 4.19. We recall the Reynolds number and Grashof number defined as follows: Re “
xuy

⌫�1{2
1

and Gr “ |f |
⌫2�3{2

1

. We may also consider so-called “localized” Reynolds and Grashof numbers

(localized to a specific mode) defined as Rej “ |ûjp0q|
⌫�1{2

j

and Grj “ |f̂j |
⌫2�3{2

j

. Recall that the requirement
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on the parameters for maintaining constant energy is 2⌫�j0uj0p0qb2 § 1. Thus, we may write this

requirement in terms of localized Reynolds and Grashof numbers as follows:

Rej0

Grj2
† 4.

5. Finite-Mode Solutions on the 2D Torus

This section is dedicated to establishing Theorem 5.2 and its consequences.

5.1. Spectral Structure Theorem. We begin with a calculation that further simplifies the
Fourier coe�cient of the nonlinear term when ⌦ is the 2D torus.

Lemma 5.1. The j
th

Fourier mode of the nonlinear term of the NSE on the 2D torus may be

written as

(49) {Bpu, uqj “ i⇡

L

ÿ

m,kPZ2

m`k“j

pmK ¨ kqp|k|2 ´ |m|2qumuk

|j|2 j
K

where in general u` is a scalar in C defined such that u``
K “ û`, with `

K “ pl1, l2qK “ p´l2, l1q.

Proof. Recall the explicit representation of the j
th Fourier mode of the nonlinear term given in

equation (18):

{Bpu, vqj “ 2⇡i

L

ÿ

kPZ2zt0u

pûj´k ¨ kqpv̂k ¨ jKq
|j|2 j

K
.

Recall that the divergence-free condition on u requires that ûj ¨ j “ 0 for all j P Z2zt0u. In 2D this
means that we may write ûj “ ujj

K where uj is now a scalar in C and j
K “ p´j2, j1q. Writing u

this way we write the j
th Fourier coe�cient of the Bpu, uq term as follows:

(50) {Bpu, uqj “ 2⇡i

L

ÿ

kPZ2

ppj ´ kqK ¨ kqpkK ¨ jKquj´kuk

|j|2 j
K
.

Note that without loss of generality we relaxed the requirement on the index from k P Z2zt0u to
k P Z2 since an index of k “ p0, 0q would not contribute to the sum anyway. By reindexing with
m “ j ´ k, the coe�cient can be written as

(51) {Bpu, uqj “ 2⇡i

L

ÿ

k,mPZ2

k`m“j

pmK ¨ kqpkK ¨ pm ` kqKqumuk

|j|2 j
K
.

A simple calculation shows that for a, b P Z2 we have a
K ¨ bK “ a ¨ b, given how we’ve chosen to

define the perpendicular vectors. Thus we may also write the nonlinear term coe�cient as

(52) {Bpu, uqj “ 2⇡i

L

ÿ

k,mPZ2

k`m“j

pmK ¨ kqpk ¨ pm ` kqqumuk

|j|2 j
K
.
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Consider the following calculation regarding the m
th coe�cient of the nonlinear term:

2 {Bpu, uqj “ 2⇡i

L

ÿ

m,kPZ2

m`k“j

pmK ¨ kqpk ¨ pm ` kqqumuk

|j|2 j
K ` 2⇡i

L

ÿ

k,mPZ2

k`m“j

pkK ¨ mqpm ¨ pk ` mqqukum|j|2 j
K

“ 2⇡i

L

ÿ

m,kPZ2

m`k“j

ˆ
pmK ¨ kqpk ¨ pm ` kqqumuk

|j|2 j
K ` pkK ¨ mqpm ¨ pk ` mqqukum|j|2 j

K
˙

“ 2⇡i

L

ÿ

m,kPZ2

m`k“j

ˆ
pmK ¨ kqpk ¨ pm ` kqqumuk

|j|2 j
K ´ pmK ¨ kqpm ¨ pk ` mqqukum|j|2 j

K
˙

“ 2⇡i

L

ÿ

m,kPZ2

m`k“j

pmK ¨ kqppk ´ mq ¨ pm ` kqqumuk

|j|2 j
K

“ 2⇡i

L

ÿ

m,kPZ2

m`k“j

pmK ¨ kqp|k|2 ´ |m|2qumuk

|j|2 j
K

Thus we may write

(53) {Bpu, uqj “ ⇡i

L

ÿ

m,kPZ2

m`k“j

pmK ¨ kqp|k|2 ´ |m|2qumuk

|j|2 j
K
.

⇤

Notice that if wavenumbers m, k are such that m is parallel to k then m
K ¨ k “ 0, and so that term

in the sum is 0. Notice also that if m, k are such that |m| “ |k| then that term in the sum is also
0. Thus, the only pairs of wave numbers that contribute to the nonlinear term in the j

th mode are
pairs of di↵erent length, that are not parallel, and whose sum is equal to j. Finally note that each
wavenumber in such a pair must correspond to a Fourier mode where u is supported in order to
contribute to the nonlinear term.

Thus the expression of the NSE in terms of Fourier modes becomes

û
1
j ` ⌫�j ûj ` i⇡

L

ÿ

m,kPZ2

m`k“j

pmK ¨ kqp|k|2 ´ |m|2qumuk

|j|2 j
K “ f̂j ; j P Z2zt0u.

Theorem 5.2. Let upx, tq “ ∞
jPZ2zt0u

|j|§N

ûjptqeij¨x
be a finite-mode solution to the NSE on the 2D

torus with nontrivial nonlinear term (i.e. Bpu, uq ‰ 0). Then there exist wavenumbers j, k such

that the following criteria hold:

(1) ûj`k “ 0,

(2) {Bpu, uqj`k “ i⇡
L pjK ¨ kqp|k|2 ´ |j|2q ujuk

|j`k|2 pj ` kqK

(3) {Bpu, uqj`k ‰ 0
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Proof. Suppose u is a finite-mode solution to the NSE with nontrivial nonlinear term. Let S be
the finite set of vectors in Z2zt0u associated with the Fourier modes where u is supported. That
is, j P S if and only if ûj ‰ 0. We seek a pair of wave numbers j, k P Z2zt0u with the following
properties:

(1) j, k P S

(2) j ` k R S

(3) j , k

(4) |j| ‰ |k|
(5) If p, q P S are such that tp, qu ‰ tj, ku and p ` q “ j ` k then either p k q or |p| “ |q|

Property 2 is there to guarantee that the first criterion of our theorem is satisfied. Properties 1,
3, and 4 together imply that i⇡

L pjK ¨ kqp|k|2 ´ |j|2q ujuk

|j`k|2 pj ` kqK ‰ 0 and contributes to the sum

for the pj ` kqth mode of nonlinear term. (We recall that the Fourier coe�cients of any solution to
the NSE are analytic in time. This implies that if ujptq and ukptq are not identically zero, then the
product ujptqukptq is not identically zero, since nonzero analytic functions may only take the value
of 0 on a discrete set of points.) Property 5 implies that for any pair of vectors p, q P S such that
tp, qu ‰ tj, ku we have i⇡

L ppK ¨ qqp|p|2 ´ |q|2q upuq

|p`q|2 pp ` qqK “ 0 and does not contribute to the sum

for the pj ` kqth mode of nonlinear term. Properties 1, 3, 4, and 5 together establish the second
and third criteria in the theorem.

We begin by choosing a vector v
˚ P S such that for any vi P S we have |vi| § |v˚| (i.e. v˚ has

maximum length in S). We let b1 “ v
˚ and b2 “ pv˚qK be a new basis for our vector space and we

write the vectors in S in the coordinates of this new basis. Geometrically speaking, we reorient the
plane so that v˚ lies on the x-axis. [See Figure 1]

(a) Original orientation of vectors in S (b) Reorientation of vectors in S

Figure 1

We then arrange the elements of S in reverse-lexicographic order (according to this new basis).
That is, j appears earlier in our list than k if and only if either the first component of j is greater
than the first component of k (that is, j is farther along in the direction of v˚ than k), or if the
first components are equal then the second component of j is greater than the second component
of k (that is, j is farther along in the direction 90˝ counterclockwise from v

˚ than k). Assuming
S contains n vectors, let us relabel the vectors in S as v1, v2, . . . , vn according to their reverse-
lexicographic order. Thinking in terms of Figure 1b, the vectors are ordered from right to left
(with v1 “ v

˚), and if a set of vectors are equally far right, these vectors are ordered from top to
bottom.
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Recall that the Fourier coe�cients of u come in pairs. That is, if vj is in S then so is ´vj . This
implies that n is an even number, and, given our ordering, the vectors v1, . . . , vn{2 have nonnegative
first components. Also notice that since we assume Bpu, uq ‰ 0, we have that n • 4.

Consider the vector v1 ` v2. [See Figure 2]. We can see v1 ` v2 R S since if v2 has positive first
component then the first component of v1 ` v2 is greater than the first component of v1, which has
the largest first component of any vector in S. If the first component of v2 is 0 then the second
component is positive and this implies that v1 ` v2 has greater length than v1, which already has
length greater than or equal to any vector in S. Thus v1 and v2 are wavenumbers that satisfy
Properties 1 and 2 of our list.

Figure 2. Vector v1 ` v2

To establish Property 5 we show that if vp, vq P S are such that vp ` vq “ v1 ` v2 then tvp, vqu “
tv1, v2u. The proof of this straightforward. The geometric idea is that any other pair of vectors
would have a sum that does not extend as far up and to the right as (i.e. has a smaller first or
second component than) v1 ` v2. Suppose vp, vq P S are such that vp ` vq “ v1 ` v2. Note that if
vp P tv1, v2u or if vq P tv1, v2u then vp ` vq “ v1 ` v2 implies that tvp, vqu “ tv1, v2u. So suppose
vp, vq R tv1, v2u. Denote the i

th component of a vector v in the basis tb1, b2u by vpiq. Note that,
given the ordering of vectors in S, for any v P S with v ‰ v1 we have that vp1q § v2p1q † v1p1q.
Thus we have vpp1q, vqp1q § v2p1q † v1p1q and so vpp1q`vqp1q † v1p1q`v2p1q and vp `vq ‰ v1 `v2.

Thus v1 and v2 are wavenumbers that satisfy Property 5. If we also have that v1 , v2 and if
|v1| ‰ |v2| then Properties 3 and 4 are satisfied and v1 and v2 are the required vectors for the
theorem (This case is represented in Figure 2.)

However, if v1 k v2 or |v1| “ |v2| then v1 and v2 do not satisfy the theorem and we must seek a
di↵erent pair of wavenumbers that satisfy the five properties listed above. We handle these cases
in turn.

Case 1: |v1| “ |v2|

For this case we again define a new basis for our vector space. Let c1 “ v1`v2
2 and c2 “ pv1`v2qK

2 be
our new basis vectors (see Figure 3).1

In this case the vectors v1 and v2 have the same first coordinate in the basis C “ tc1, c2u, and that
first coordinate is strictly larger than the first coordinate (in C) of any other vector in S. (If any
other vector had the same or larger first coordinate in C then that vector would have been come
between v1 and v2 in the ordering under the basis tb1, b2u, which is a contradiction.) Let ṽ1 . . . , ṽn

1Why choose c1 “ v1`v2
2 and c2 “ pv1`v2qK

2 as opposed to, say, c1 “ v1 ` v2 and c2 “ pv1 ` v2qK or c1 “ v1`v2
|v1`v2|

and c2 “ pv1`vj0 qK

|v1`v2| ? The choice is nothing deep. The problem with v1 `v2 is that such a vector will not fit compactly

in our diagrams. The problem with v1`v2
|v1`v2| is that it is more cumbersome to type.
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be the reverse-lexicographic ordering of the vectors in S according to the basis C. Without loss of
generality we may assume ṽ1 “ v1 and ṽ2 “ v2 as in Figure 3. Note that since that by construction,
in basis C, ṽ1p1q “ ṽ2p1q ° 0.

(a) Original orientation (b) Reoriented

Figure 3. |v1| “ |v2|

Let ṽj0 be the first vector in this new ordering of S such that |ṽj0 | ‰ |ṽ1| (see Figure 4a for example).
If no such vector exists then Bpu, uq “ 0 and we are outside the scope of our theorem. We are
now in a position to find pairs of vectors that satisfy the required five properties. Again, we must
consider cases:

(a) |ṽj0 | ‰ |ṽ1|
(b) |ṽj0 | ‰ |ṽ1|, ṽj0 k ṽ1

Figure 4. |ṽj0 | ‰ |ṽ1|

(1.a) ṽj0 , ṽ1

In this case, the pair ṽ1, ṽj0 by definition satisfy Properties 1, 3, and 4. To see that ṽj0 ` ṽ1 R
S note that either ṽj0 has a positive first component (in the basis C “ tc1, c2u), or ṽj0 has
0 as its first component and has a positive second component. In the first case ṽj0 ` ṽ1 has
a larger first component than ṽ1, and thus is not in S. In the second case |ṽj0 ` ṽ1| ° |ṽ1|
and thus is not in S. Thus Property 2 is satisfied.

To see that Property 5 is satisfied we consider a pair of vectors ṽp, ṽq P S such that ṽp` ṽq “
ṽ1 ` ṽj0 with tṽp, ṽqu ‰ tṽ1, ṽ1u. Without loss of generality, suppose p † q (that is, ṽp comes
before ṽq in our reverse-lexicographic ordering in basis C). We show that any such pair of
vectors will be such that 1 † p † q † j0 and thus ṽp, ṽq do not contribute to Bpu, uq, since
|ṽp| “ |ṽq| (since p, q † j0 implies that both ṽp and ṽq have the same length as ṽ1). Recall
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that, given the ordering under the basis C, for any ṽ P S such that ṽ R tṽ1, ṽ2u we have
that ṽp1q † ṽ1p1q “ ṽ2p1q.
As we saw previously, if any other pair of vectors ṽp, ṽq is such that ṽp ` ṽq “ ṽ1 ` ṽj0 then
neither ṽp nor ṽq is equal to ṽ1 or ṽj0 .

Suppose ṽp “ ṽ2. Then ṽp ` ṽq “ ṽ1 ` ṽj0 implies that, in the basis C, ṽqp1q “ ṽj0p1q (since
ṽpp1q “ ṽ2p1q “ ṽ1p1q). This also implies ṽqp2q ° ṽj0p2q (since ṽpp2q “ ṽ2p2q † ṽ1p1q). This
implies that q † j0 and thus that 1 † p † q † j0. Thus, by our choice of j0, |ṽp| “ |ṽq| “ |ṽ1|
as desired.

Suppose ṽp ‰ ṽ2, i.e. p ° 2. Then we have, in particular, that ṽpp1q † ṽ1p1q. Thus
ṽp ` ṽq “ ṽ1 ` ṽj0 implies that ṽj0p1q † ṽqp1q. This implies that j0 ° q and thus that
1 † p † q † j0. Thus |ṽp| “ |ṽq| “ |ṽ1| as desired.
Therefore, we conclude that the vectors ṽj0 and ṽ1 are vectors that satisfy the theorem.

(1.b) ṽj0 k ṽ1

In this case consider the set of vectors in S with the same first component (in the basis
C) as ṽj0 and with size strictly less than |ṽ1|. Call this set of vectors S

1. (S1 is the set of
vectors in Figure 4b that lie on the vertical dotted line, but not on the outer circle).

– If ṽj0 is the only vector in this set (i.e. S1 “ tṽj0u) then the pair ṽj0 , ṽ2 satisfies all
the conditions of the theorem. This is again because ṽ2p1q ` ṽj0p1q ° ṽ1p1q (and thus
ṽ2 ` ṽj0 R S), and any other pair of vectors ṽp, ṽq such that ṽp ` ṽq “ ṽ2 ` ṽj0 are such
that |ṽp| “ |ṽq|, and the reasoning is similar to the case (1.a). See Figure 5a.

– If there are other vectors in S
1, then let ṽj1 be the vector in S

1 with the smallest
second coordinate. If ṽj1 is not parallel to ṽ2 (see Figure 5b), then the pair ṽj1 , ṽ2

satisfies all of the conditions of our theorem. Essentially, this is because any other
pair of vectors whose sum matches the first coordinate of ṽj1 ` ṽ2 must either both
have maximum length (which is what we want) or one is from S

1 and the other is from
tṽ1, ṽ2u. However, since ṽj1 has the smallest second coordinate of any vector in S

1 and
ṽ2 has a smaller second coordinate than ṽ1, no other sum of a vector from S

1 and a
vector from tṽ1, ṽ2u will match the second coordinate of ṽj1 ` ṽ2.

– If both ṽj0 k ṽ1 and ṽj1 k ṽ2 (see Figure 5c), then the pair ṽj1 , ṽ1 satisfies the theorem.
As before, this is because any other pair of vectors whose sum matches the first coor-
dinate of ṽj1 ` ṽ1 must either both have maximum length or one is from S

1 and the
other is from tṽ1, ṽ2u. Note that in our current case, any vector from S

1 added to ṽ1

will have a positive second coordinate and any vector from S
1 added to ṽ2 will have a

negative second component. This is due to the fact that ṽ2p2q “ ´ṽ1p2q and for any
ṽi P S

1 we have |ṽip2q| † |ṽ1p2q| (owing to the fact that the vectors from S
1 now are

sandwiched between two vectors, ṽj0 and ṽj1 , that are positive scalar multiples of ṽ1
and ṽ2 where that scalar is strictly less than 1). Thus, of all the sums of vectors where
one is from S

1 and the other is from tṽ1, ṽ2u, the sum ṽj1 ` ṽ1 is the only sum having
the smallest positive second component. Thus, the pair ṽj1 , ṽ1 satisfy the conditions of
our theorem. Indeed, in this case, any vector from S

1ztṽj0u together with ṽ1 will meet
the conditions of the theorem (as well as any vector from S

1ztṽj1u together with ṽ2).

Thus we have shown that even in the case where |v1| “ |v2| we can find wavenumbers j, k that
satisfy all the conditions of the theorem.

Case 2: v1 k v2
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(a) (b)
(c)

Figure 5. ṽj0 k ṽ1

If v2 is parallel to v1, let vk0 be the first ordered (in basis tb1, b2u) vector from S such that vk0
is not parallel to v1. If no such vector exists then Bpu, uq “ 0 and we are outside the scope of
our theorem. Thus we may assume that such a vector exists. Note that such a vector must have
a nonnegative first component. (Otherwise we would have ´vk0 precede vk0 on the list. But we
already said that any vector preceding vk0 was parallel to v1, implying that ´vk0 and thus vk0 was
parallel to v1. This is contrary to our assumption on k0). We must consider two further subcases.
The first is when |vk0 | ‰ |v1|. The second is when |vk0 | “ |v1|.
(2.a) |vk0 | ‰ |v1|:

In this case the pair v1, vk0 by definition satisfies Properties 1, 3, and 4. We consider the
vector v1 ` vk0 (see Figure 6). To see that v1 ` vk0 R S note that either vk0 has a positive
first component, or vk0 has 0 as its first component and has a positive second component.
In the first case vk0 ` v1 has a larger first component than v1, and thus is not in S. In the
second case |vk0 ` v1| ° |v1| and thus is not in S. Thus Property 2 is satisfied.

Figure 6. Vector v1 ` vk0

To see that Property 5 is satisfied we consider a pair of vectors vp, vq P S such that vp`vq “
v1 ` vk0 . We show that any such pair of vectors such that tvp, vqu ‰ tv1, vk0u will also be
such that 1 † p † q † k0 and thus that vp k vq (since p, q † k0 implies that both vp and vq

are parallel to v1) and therefore do not contribute to Bpu, uq.
As we saw above, if one of vp, vq P tv1, vk0u then tvp, vqu “ tv1, vk0u. So assume that neither
vp nor vq is equal to v1 or vk0 . Note that since for any v P Sztv1u we have vp1q † v1p1q, the
identity vp`vq “ v1`vk0 implies that vpp1q, vqp1q ° vk0 . This implies that 1 † p, q † k0, and
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thus that vp k vq. (Note that in fact there are no vectors vp, vq P S such that vp`vq “ v1`vk0
and tvp, vqu ‰ tv1, vk0u.)
Thus the conditions of the theorem are satisfied in this case.

(2.b) |vk0 | “ |v1|:
For this case we redefine a basis for our vector space in a similar manner to what we did in

Case 1. Let d1 “ v1`vk0
2 and d2 “ pv1`vk0 qK

2 be our new basis vectors (see Figure 7).

(a) |vk0 | “ |v1|
(b) Reoriented

Figure 7. |vk0 | “ |v1|

In this case the vectors v1 and vk0 have the same first coordinate in the basis D “ td1, d2u,
and that first coordinate is strictly larger than the first coordinate (in D) of any other
vector in S. (If any other vector had the same or larger first coordinate in D then that
vector would have come between v1 and vk0 in the ordering under the basis tb1, b2u. But by
assumption the only such vectors are parallel to v1. Thus each such vector is of the form
vi “ civ1 where ci † 1, and so each such vector has smaller first coordinate than v1 in any
basis.) Let v1

1, . . . , v
1
n be the reverse-lexicographic ordering of the vectors in S according to

the basis D. Without loss of generality we may assume v
1
1 “ v1 and v

1
2 “ vk0 . (See Figure

7b)

Notice now that we are in the same position we were in at the beginning of Case 1. Thus,
we may treat this situation in the same way as we treated Case 1.

⇤

5.2. Allowable Forces for Finite Mode Solutions. This section is dedicated to establishing
limits on the types of forces that can admit of the possibility of a finite mode solution to the 2D
NSE with non-trivial non-linear term. As a consequence, we will show that no finite-mode solution
with nontrivial nonlinear term is possible in the case when the force is an eigenvector of the Stokes
operator. This, combined with results from Section 4, proves the impossibility of so-called chained

ghost solutions introduced in [24].

We begin with the following corollary to Theorem 5.2.

Corollary 5.3. Let u be a finite mode solution to the NSE on the 2D torus with non-trivial non-

linear term. Let Sf (resp. Su) be the set of wave numbers associated with the Fourier modes where

f (resp. u) is supported. For all pairs of wavenumbers j, k P Su that satisfy the conditions of

Theorem 5.2, f must be supported on the Fourier mode associated with j ` k (i.e. j ` k P Sf ).
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In particular, let kf P Sf be such that |kf | • k for all k P Sf and let ku P Su be such that |ku| • k

for all k P Su. Then |kf | ° |ku|.

Proof. Recall the following Fourier characterization of the NSE:

(54) û
1
j ` ⌫�j ûj ` {Bpu, uqj “ f̂j ; j P Z2zt0u.

Suppose u is a finite mode solution to the NSE. Let j, k be a pair of wave numbers that satisfy
the conditions of the Theorem 5.2. Then the Fourier characterization of the NSE for the mode
associated with wavenumber j ` k is as follows:

(55) {Bpu, uqj`k “ f̂j`k

Since {Bpu, uqj`k ‰ 0 by Theorem 5.2, this implies that f̂j`k ‰ 0. In the proof of Theorem 5.2 it is
demonstrated that j and k can be chosen such that |j ` k| ° ku for any ku P Su. ⇤

Note that Corollary above implies that any nontrivial (in the sense that Bpu, uq ‰ 0) finite-mode
solution must have a force f that is supported outside the spectrum of the solution u, in particular
f must have modes strictly bigger then the largest non-zero mode in the solution, |ku|. In the
trivial case, i.e. Bpu, uq “ 0 (for example if a solution lives in an eigenspace of A or if the non-zero
wavenumbers in a solution are parallel), the Fourier components become decoupled, and therefore,
any trivial finite-mode solution on the global attractor is necessarily a steady state. In the case of
nontrivial solutions we obtain the following result.

Theorem 5.4. In the system (6) let ⌦ “ r0, Ls2per and let the force be an eigenvector of the Stokes

operator. Let u be a solution to (6) such that Bpu, uq ‰ 0. Then u must be supported on an infinite

number of Fourier modes.

Proof. Let the force f be an eigenvector of the Stokes operator. Assume that u is a solution to the
NSE with force f such that Bpu, uq ‰ 0 and u is supported on a finite number of Fourier modes.
Let Sf (resp. Su) be the set of wave numbers associated with the Fourier modes where f (resp.
u) is supported. Since f is an eigenvector of the Stokes operator it must be the case that for any
kf1, kf2 P Sf we have |kf1| “ |kf2|. By Corollary 5.3 this implies that for any kf P Sf and ku P Su

we have |kf | ° |ku|. This implies that pf, uq “ 0.

The energy balance equation in this case is simply:

(56)
1

2

d

dt
|u|2 “ ´⌫}u}2.

By the Poincaré inequality this yields 1
2

d
dt |u|2 § ´⌫�0|u|2. Applying Gronwall’s inequality we have

|uptq|2 § |up0q|2e´2⌫�0t. Thus we have that limtÑ8 |uptq| Ñ 0 and thus uptq converges to 0 in H.
Moreover, since the solution operator Sptq depends continuously on the data, 0 must be a fixed
point (stationary solution) on the global attractor, which implies that f ” 0. This contradicts our
assumption on f . Thus any solution u with nontrivial nonlinear term must be supported on an
infinite number of Fourier modes.

⇤

Corollary 5.5. When the force is an eigenvector the only finite-mode solution on the global attrac-

tor of to the 2D NSE is the trivial solution u “ f
⌫�f

(where �f is the eigenvalue associated with the

eigenvector f). In particular, u “ f
⌫�f

is the only finite-mode stationary solution.
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Proof. By Theorem 5.4, if a solution u is such that Bpu, uq ‰ 0 then u cannot be finite-mode. In
the case where Bpu, uq “ 0 we are in the Stokes system (24), where the only bounded solution is
the trivial solution u “ f

⌫�f
.

⇤

Remark 5.6. Looking outside the global attractor, we note that the proof of the Theorem 5.4 implies

that in the case the force f is an eigenvector corresponding to an eigenvalue �f , the only finite-mode

solutions to the Navier-Stokes equations are either those where the non-zero modes are parallel to

the modes of f (this can only happen if f is a one-mode force) or those where the modes are equal

in magnitudes to the modes of f . In both cases such solutions converge as t Ñ 8 to the stationary

solution u “ f
⌫�f

.

Corollary 5.7. There are no finite-mode ghost solutions to the 2D NSE when the force is an

eigenvector of the Stokes operator. In particular, there are no so-called chained ghost solutions.

Proof. Theorem 5.4 demonstrates that no finite-mode solution exists at all when the force is an
eigenvector and the solution has nontrivial nonlinear term. In the case where the nonlinear term is
trivial we are in the Stokes system. Theorem 4.12 implies that there are no ghost solutions possible
in the Stokes system. Thus, when the force is an eigenvector of the Stokes operator, there do not
exist any finite-mode ghost solutions. In particular, this implies that there do not exist chained
ghost solutions. ⇤

Naively, there is nothing to rule out the possibility of a finite-mode solution so long as the force

is supported on all wavenumbers k where ûk “ 0 but {Bpu, uqk ‰ 0. However, for wavenumbers j

and k where the conditions of Theorem 5.2 are satisfied, we have an interesting condition on the
Fourier coe�cients ûj and ûk.

Proposition 5.8. Let j, k be wavenumbers that satisfy the conditions of Theorem 5.2. Then the

product ujuk is constant, and both uj and uk are nowhere vanishing.

Proof. When j, k satisfy the condition of Theorem 5.2, the Fourier characterization of the pj ` kqth
mode of the NSE can be written as cj,kujptqukptq “ fj`k, where cj,k “ pjK ¨ kqpk ¨ pj ` kqq 1

|m|2 is (a

non-zero) constant. Since fk is also (a nonzero) constant, this implies that the product ujptqukptq
is constant. It is well-known that the functions ujptq and ukptq are analytic in time. Thus, in order
for the product to be a non-zero constant, we must have that neither function is ever equal to 0. ⇤

6. Appendix

Define our domain ⌦ as follows: ⌦ “ r0, Lsnper for n “ 2, 3. First we represent pu ¨ rqv. Any

divergence-free L
2 function on the torus may be represented by upxq “ ∞

kPZnzt0u ûke
ip2⇡{Lqk¨x,

where each ûk is a vector in Cn such that ûk “ û´k, ûk ¨ k “ 0, and
∞

kPZnzt0u |ûk|2 † 8. Consider
the following formal calculations, which can be made rigorous by assuming u, v P DpAq.
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pu ¨ rqv “ pu ¨ rq
ÿ

kPZnzt0u
v̂ke

ip2⇡{Lqk¨x

“
ÿ

kPZnzt0u
v̂k

nÿ

j“1

uj
B

Bxj
e
ip2⇡{Lqk¨x

“ 2⇡i

L

ÿ

kPZnzt0u
v̂kpu ¨ kqeip2⇡{Lqk¨x

“ 2⇡i

L

ÿ

kPZnzt0u
v̂k

¨

˝
ÿ

jPZnzt0u
ûje

ip2⇡{Lqj¨x ¨ k
˛

‚e
ip2⇡{Lqk¨x

“ 2⇡i

L

ÿ

j,kPZnzt0u
pûj ¨ kq v̂keip2⇡{Lqpk`jq¨x

Now we reindex with m “ k ` j to get

pu ¨ rqv “ 2⇡i

L

ÿ

mPZnzt0u

ÿ

kPZnzt0u
pûm´k ¨ kq v̂keim¨x

To get Bpu, vq we need to project pu ¨rqv onto the divergence-free vector fields. On the torus, this

means we need {Bpu, vqm ¨ m “ 0 for each m P Znzt0u. Since L
2 can be orthogonally decomposed

into gradients and divergence-free vector fields, we can calculate Bpu, vq in two ways. First, we
may subtract o↵ the projection of pu ¨ rqv onto the space of gradients. In this case we project

r {pu ¨ rqvsm onto m and then subtract. Thus we have

{Bpu, vqm “ 2⇡i

L

ÿ

kPZnzt0u

„
pûm´k ¨ kqv̂k ´ pûm´k ¨ kqpv̂k ¨ mq

|m|2 m

⇢
.

Alternatively, in 2D we can project r {pu ¨ rqvsm onto the direction of mK “ p´m2,m1q as follows:

{Bpu, vqm “ 2⇡i

L

ÿ

kPZ2zt0u

pûm´k ¨ kqpv̂k ¨ mKq
|mK|2 m

K
.

Since |mK| “ |m| we may rewrite this as

{Bpu, vqm “ 2⇡i

L

ÿ

kPZ2zt0u

pûm´k ¨ kqpv̂k ¨ mKq
|m|2 m

K
.
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