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Introduction 

I love doing research in an area of mathematics where beautiful mathematical theory is 
grounded in concrete physical interpretations. My research falls under the broad umbrella of 
mathematical fluid dynamics. In particular, I study the equations that describe the evolution of 
the motion of fluids—a system of partial differential equations known as the incompressible 
Navier-Stokes equations (NSE). These equations are famous because of a remarkable 
contradiction in practice and theory: the Navier-Stokes equations are applied with success in 
areas ranging from blood flow to weather prediction, and yet not only is there no explicit solution 
for these equations in general, it is not even known whether the problem is well-posed! This 
significant gap between theory and practice is why the Clay Institute lists the resolution of the 
existence and uniqueness of physically realistic solutions as one of its seven Millennium Prizes. 
However, even if the millennium problem is solved tomorrow, there are still mountains of open 
problems of interest to mathematicians and scientists alike concerning the general behavior of the 
solutions that do exist. Indeed, in the case of 2 dimensions the existence/uniqueness problem has 
been solved, and yet little is known about the qualitative properties of the solutions, especially in 
connection with applications.  

In particular, turbulent fluid flow (a phenomenon familiar to anyone who has seen a 
crashing waterfall or experienced a choppy airplane flight) is poorly understood both physically 
and mathematically. The existing empirical theory of turbulent flow, while being appropriately 
descriptive, remains disconnected from the equations that govern the flow, and thus is 
inadequate for making predictions. Mathematically, we would like to ground the physical theory 
in the Navier-Stokes equations themselves in a way that is both explanatory and predictive. We 
would like to develop rigorous conditions that give rise to or preclude turbulence and to 
understand statistical behavior of turbulent phenomena. The empirical theory points towards the 
importance of two properties for understanding turbulence: kinetic energy (a measure of total 
fluid motion) and enstrophy (a measure of the “swirliness” of the fluid). As a result, much ongoing 
work is dedicated to understanding the evolution of these quantities in actual solutions. It is in 
this area that my research lies.  

In my research, which has been partially funded by the National Science Foundation, I 
consider the incompressible Navier-Stokes equations from a dynamical systems perspective, with 
an eye towards understanding turbulence.  The central question of my dissertation considers 
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whether (given the right initial data and forcing function) it is possible to have a solution of the 
Navier-Stokes equations that is non-stationary but where the energy and enstrophy nevertheless 
remain constant in time. Such solutions have been dubbed “ghost solutions” in the literature [4]. 
I find the question of whether ghost solutions exist interesting on its face, but there are several 
independent motivations for investigating them.  
 

Motivation 

Taking a dynamical systems approach to the NSE means thinking about solutions 
geometrically. We consider the set of all 2D or 3D vector fields (over whatever spatial domain we 
want to consider) with finite energy (𝐿" norm) and finite enstrophy (𝐿" norm of the curl). The 
solution over time of the NSE can be thought of as a path in this space of possible vector fields. In 
the 2D case all roads lead to Rome, and there exists a compact set known as the global attractor 
that attracts all paths quickly and uniformly [see figure 1]. (There is a similar concept in 3D 
though the story is more complicated). The global attractor captures the long-term dynamics of 
the system and so is an object of great interest.  

 

 
It was shown in [1] that, given the simplest meaningful spatial domain for the NSE, the 

energy and enstrophy of solutions in the global attractor lie somewhere within a closed parabolic 
region of the energy-enstrophy (e-E) plane [see figure 2]. A question that arises naturally from this 
result (as well as the empirical theory of turbulence) is just how well the dynamics of the global 
attractor can be captured by considering simply the dynamics in the energy/enstrophy plane. In 
particular, does a stationary point in the energy/enstrophy plane necessarily correspond to a 
stationary point in the space of possible solutions? Any non-stationary solution whose projection 
into the energy/enstrophy plane is stationary would be a ghost solution. Thus, the existence of 
ghost solutions would be an important check on the utility of simply considering the 
energy/enstrophy of a solution in order to understand its dynamics.  
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Another motivation for the study of ghost solutions comes from results in [3] that give a 
sufficient condition for generating a robust type of turbulence in 2D that has remained elusive in 
numerical simulations. It is unknown whether such turbulence is theoretically ruled out for some 
reason, or whether certain simplifications in the simulation process preclude its development. 
The theoretical results from [3] show that solutions where the ratio of the average energy to the 
average enstrophy stays small enough must necessarily generate the elusive turbulence. Ghost 
solutions would be nice candidates for such solutions since the ratio of their energy to enstrophy 
is constant.  

 

Results and Future Work 

Significant results concerning ghost solutions are minimal in the literature. It is known that 
if the norm of the force is small enough, then there are no ghost solutions in the global attractor 
[1]. It is also known that if the force has an extremely special Fourier representation then there 
are no ghost solutions in the global attractor [5]. In both of these situations we also know that 
there is no turbulence. More recent results [6, 7] focus on ghost solutions that satisfy an 
additional (somewhat ad hoc) condition that makes their analysis easier. These are referred to as 
chained ghost solutions in the literature. Their existence is ruled out under only a handful of 
extremely specific conditions. Unknown still are whether more generally there exist non-
stationary solutions simply with constant energy profiles. Similarly, it is unknown whether a non-
stationary solution may exhibit constant enstrophy regardless of the energy profile.  

My own results in this area are as follows. I can construct a non-stationary solution in 3D 
such that the energy remains constant. I can also construct a non-stationary solution in 3D where 
the enstrophy remains constant. However, these constructions preclude keeping both properties 
constant, and they necessarily live outside of the attractor. These constructions come from 
studying a simpler system, known as the Stokes equations, where the constructions are more 
straightforward and a complete theory of ghost solutions can be established [2]. In a different line 
of attack, relying heavily on Fourier analysis, I can show that chained ghost solutions do not exist 
under any condition. My results on chained ghost solutions have implications for what solutions 
to the NSE can look like more generally. My current research is directed towards understanding 
these consequences and hopefully expanding their scope. In my future work I plan to focus study 
on the ratio of average energy to average enstrophy described in [3]. The hope is to come up 
with similar sufficient conditions for turbulence but in terms of the geometric structure of the 
forcing function. 
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